In Praise of Project Planning, Pilots, Points and Processing

Knowing where to place your Markers

Marker placement is a huge subject and can be tricky to grasp if you are a newcomer to Motion Capture. Even highly qualified and experienced biomechanists can struggle when presented with a new project and a blank sheet. If your mathematical background doesn’t include a detailed knowledge of Vector Algebra where do you start?

If you can find similar studies in the published literature you may be able to use a previously developed marker-set and modeling protocol. Many lower limb studies will be based on the so-called Helen Hayes method (though it is also known by many other names). This is often regarded as the gold standard for Gait Analysis, despite being from the 1980’s. It was perfect for the camera systems of the day, using the absolute minimum number of markers to save all the post processing time. It solves problems that 21st century systems no longer have. Though take care as almost all models now are ‘modified-Helen-Hayes’ and they vary in subtle ways.

If you can’t ‘stand on the shoulders of giants’ where do you begin? 

Let’s consider Markers, Virtual Markers and Points (ie coordinates in 3d space). Each segment that you want to track will need at least three, non-linear, points to give all six degrees of freedom, XYZ and 3 Rotations. An individual marker tells you a position; singularly it can’t give you an orientation.

These can be real markers or virtual ones, which are points calculated from marker data but offset in a rigorously defined way. For example if you want to know where a Knee Joint Centre (KJC) is, you can’t place a marker inside the body but if you can place two, carefully on the surface where the knee joint axis line passes through the skin it is possible to readily define the KJC, as a Virtual Marker, halfway between them. Motion Analysis’s highly regarded Cortex software has an easy to use graphical interface that presents this and even more complex Vector Algebra with beautiful simplicity.

Three markers for every segment can soon add up, but often a single, carefully defined point (real or virtual marker) can be shared. That KJC point, or the outside knee marker can be used for the thigh and shank segments.

After you have decided on a marker set that covers the segments that you need to know the angles between, plus all the other spatial–temporal parameters which Cortex will also calculate for you, you’ll be ready to get on with the fun part: the motion capture of all your subjects. Or can you?

You may need to revise your ideal marker set due to the reality of you systems camera count and the specific move you want to analyze. For example, if your laboratory has cameras permanently fixed high on the walls and you are studying push-ups, any markers on the front of the subject will be impossible to see. For the chest you could just place three or more markers on the subject’s back and remove the front markers. Or better still leave the front markers, add additional back markers and use predefined tools to recreate the ‘lost’ markers with virtual ones calculated from the relative positions of these extras. There are gap filling interpolation tools but they are making up data, whereas these ‘virtual joins’ are using genuine information.

It’s worth consider a Pilot Study

If this is all seeming a bit difficult to grasp, then we highly recommend a Pilot Study. Often the best way to find out what snags are going to catch you out is to get in the lab and try it. Set aside time to try a couple of subjects with different marker sets. Work through this data and find out where markers need adding, or which ones are not needed. It will also help you decide which parts of the myriad results are essential for your study.

Time and effort spent on a Pilot Study early on always saves you later down the line! It can help prevent hours of clean up and post processing, and most often it highlights a tiny tweak that could have prevented you answering the actual question you set out to study.

If you don’t have a lab yet but are thinking of investing in one then please contact Motion Analysis, we’ll be happy to discuss your experiment. We’ve helped set up thousands of labs around the world and will be happy to assist.

Important considerations when purchasing a motion capture system

If you’re still in the process of deciding on the motion capture system you need, we have put together a helpful checklist to keep in mind during your decision making process.

Cortex 10 Raises the Bar for Motion Capture Excellence

Motion Analysis has built its reputation over 40 years as a pioneer of innovative motion capture technology. Our powerful Cortex software platform has become the gold standard for biomechanical researchers, animators and movement scientists around the world. Today, we are proud to announce the release of Cortex 10 – a new version with some great new capabilities.

With each new iteration, we strive to push the boundaries of what’s possible in motion tracking and analysis. This release introduces several features that will streamline workflows, unlock new research potential, and elevate the precision of motion data like never before.

Integrated Glove Tracking

One of the most significant additions in Cortex 10 is the seamless integration of MANUS Meta glove technology. We have combined the robust, marker-based motion capture core of Cortex with MANUS’s high-fidelity finger animation data stream. This yields an unprecedented level of hand tracking fidelity from a single unified data channel for biomechanics and animation.

Automated Marker Identification

Setting up robust marker identification can be a tedious process. With Cortex 10, we’ve dramatically simplified this workflow using new automated tools. We provide four pre-built “golden” marker templates that can auto-scale to subjects in real-time. Additionally, a new marker generation script allows users to rapidly build custom marker sets from previous capture data.

Intelligent Batch Processing

The new batch processing options in Cortex 10 add a level of intelligence and customization that will optimize post-production pipelines. Users can now selectively process and export files based on the capture status and file type using a simple selection menu or custom scripts. This makes it easy to streamline exports for analysis while excluding any unwanted capture files.

Collaborative Marker Management

To foster better teamwork, we’ve made the central system objects folder used for storing marker definitions fully editable in Cortex 10. This allows multiple users to access a shared network location for storing and managing marker object variations across consecutive projects.

Simplified Multi-Markerset Handling

Another key addition is markerset-based capture trimming using new built-in scripts. This tool is critical when dealing with complex captures involving multiple markerset objects, which can convolute the data stream. With a simple script, users can trim out individual markersets for clean, focused analysis.

HD Video Integration

Last but not least, Cortex 10 adds integration with our new Rainbow camera line. These reference video cameras can record full HD at over 80FPS or 1.1Mpxls above 100FPS while precision synchronized too the motion capture data stream. This offers vastly improved video reference capabilities for analysis.

We have worked tirelessly to pack Cortex 10 with innovations that will help our users capture more precise movement data through streamlined workflows and enhanced processing power. This release is a major step forward that reinforces why Cortex remains the most trusted and capable motion capture software platform in the world.

Cortex 10 is now available to all Motion Analysis customers with current support contracts or warranties. We encourage you to upgrade today to take advantage of these powerful new features. As always, we welcome any feedback from our user community as we continue raising the bar for motion capture excellence.

Book a demo today

10 Surprisingly cool career paths in motion analysis

You might think motion capture is all about Hollywood stars prancing around in spandex suits, but the applications of this cutting-edge technology go far beyond the silver screen. In fact, motion analysis experts are in high demand across a diverse range of sectors, each offering its own unique brand of fun and fulfillment. Let’s take a look:

1. Biomechanist barnstormers

As a motion analysis pro in the world of biomechanics, you’ll get to study the mechanics of the human body in mind-bending detail. Whether you’re helping athletes optimize their performance or assisting doctors in rehabilitation, your work will have a tangible impact on people’s lives. Plus, you get to geek out over fancy terms like “joint kinematics” and “ground reaction forces” – what’s not to love?

2. Virtual virtuoso

Love the idea of creating immersive virtual worlds? Motion analysis is the key to unlocking the next generation of gaming, VR, and animation. Become a motion-capturing maverick, and you could be the mastermind behind the captivating movements of your favorite video game characters or the lifelike animations that wow audiences.

3. Robotic rockstar

Ever dreamed of programming robots to move with the grace and dexterity of a human? Motion analysis is your ticket to the cutting edge of robotics and automation. Analyze movement patterns, optimize trajectories, and bring a touch of humanity to the machines of the future.

4. Sports sensation

For the athletically inclined, motion analysis offers a front-row seat to the inner workings of elite sports. Whether you’re helping coaches fine-tune training regimes or identifying injury risk factors, your work will give you an insider’s view of the high-stakes world of professional athletics.

5. Dance dynamo

Who says motion analysis is all about crunching numbers? If you’ve got a passion for the performing arts, you can put your movement expertise to work choreographing captivating dance routines or analyzing the technique of prima ballerinas. Get ready to pirouette your way into an exciting new career.

6. Accident investigator

When things go wrong, motion analysis can be a game-changer. From reconstructing car crashes to analyzing workplace incidents, your ability to break down complex movements can help uncover the truth and prevent future accidents.

7. Fashion forward

Haute couture may seem like an unlikely destination for a motion analysis pro, but the industry is actually teeming with opportunities. Leverage your movement expertise to design ergonomic clothing, optimize garment fit, and even enhance the runway experience with cutting-edge motion capture.

8. Medical maverick

In the world of healthcare, motion analysis is revolutionizing the way we diagnose, treat, and rehabilitate patients. From analyzing gait patterns to monitoring neurological conditions, your skills can make a real difference in people’s lives.

9. Industrial innovator

Motion analysis isn’t just for the glitz and glamor – it’s also transforming the way we approach industrial processes. Optimize manufacturing workflows, improve product design, and even enhance workplace safety through the power of movement data.

10. Wildlife wizard

For the nature enthusiasts out there, motion analysis can open the door to a career studying the remarkable movements of the animal kingdom. From tracking the migratory patterns of majestic creatures to analyzing the biomechanics of our furry, feathered, and finned friends, the possibilities are endless.

So, there you have it – ten surprisingly awesome career paths in the world of motion analysis. Whether you’re a data-crunching dynamo or a movement-loving maverick, the opportunities are endless. So why not strap on your motion capture suit and get ready to shake up the world?

11. Mocap manufacturer

If you’re technically-inclined, why not consider a role in the motion capture manufacturing industry? We employee all of the above, as well as high-end hardware and superb software engineers, marketing maestros, sales specialists, admirable administrators, terrific technicians and many more.

7 Ways movement tracking enhances sports performance

Movement tracking technologies, such as motion capture systems, have long been recognized for their valuable applications in sports performance analysis. However, beyond the obvious uses, these advanced tools can unlock a wealth of unexpected insights that can truly transform an athlete’s training and competitive edge.

1. Injury prevention and rehabilitation

By capturing detailed movement data, sports scientists can identify subtle biomechanical imbalances or movement patterns that predispose athletes to certain injuries. This allows for targeted interventions and adjustments to training regimes to mitigate injury risk. Similarly, motion tracking is invaluable in monitoring an athlete’s progress during rehabilitation, ensuring a safe and effective return to play.

2. Technique refinement

The granular data provided by movement tracking enables coaches and athletes to scrutinize technique with unprecedented precision. This allows for the identification of minute flaws or inefficiencies that may be hampering performance, leading to tailored technique adjustments that can unlock new levels of skill and efficiency.

3. Talent identification

Analyzing the movement signatures of elite athletes can provide a blueprint for the key physical attributes and motor control patterns that underpin success in a given sport. By applying this knowledge to the movement data of aspiring athletes, coaches can identify promising talent with greater accuracy, ensuring they nurture the right individuals for long-term development.

4. Psychomotor skills assessment

Movement tracking can reveal insights into an athlete’s cognitive and decision-making abilities, not just their physical skills. By studying how athletes respond to dynamic, game-like scenarios, researchers can assess psychomotor skills such as reaction time, spatial awareness, and anticipation – critical factors in many sports.

5. Fatigue monitoring

Continuous monitoring of an athlete’s movement patterns can provide early warning signs of neuromuscular fatigue, allowing coaches to optimize training loads and recovery periods. This helps prevent overtraining and ensures athletes reach competition day in peak condition.

6. Quantifying the effects of equipment and apparel

Motion capture allows sports scientists to precisely measure the impact of equipment, apparel, and even environmental factors on an athlete’s biomechanics and movement efficiency. This data can drive evidence-based decisions on the most performance-enhancing gear and playing surfaces.

7. Enhancing coaching effectiveness

Beyond the athlete, motion tracking technologies can enhance the effectiveness of coaches themselves. By providing objective, data-driven insights, coaches can make more informed decisions, refine their training methodologies, and better communicate with athletes to drive continuous improvement.

These are just a few of the unexpected ways that movement tracking is transforming the world of sports performance. As these technologies continue to evolve, the opportunities to gain a competitive edge will only expand, making them an increasingly indispensable tool for any serious athlete or coach.

Motion capture systems for animal studies

What is motion capture for animal studies?

A motion capture system is a mix of hardware and software that records the movement and positioning of objects or animals in three-dimensional space. It is used in fields such as animal behavior, biomechanics, and zoology to accurately analyze and study the movement and dynamics of various species.

How can a motion capture system enhance the work of an animal researcher?

Motion tracking systems provide animal researchers with valuable data and insights that can enhance their understanding of animal behavior, locomotion, and biomechanics. By capturing precise, three-dimensional movement data, researchers can gain a deeper understanding of factors such as gait patterns, joint kinematics, and the biomechanics of specific animal species.

What does a motion capture system consist of?

A typical motion capture system for animal studies includes the following key components:

Important considerations when purchasing a motion capture system for animal studies

When evaluating and purchasing a motion capture system for animal research, consider the following factors:

Conclusion

Selecting the right motion capture system is crucial for animal researchers to effectively conduct studies, assess animal behavior and biomechanics, and gain valuable insights. By considering the key factors outlined in this checklist, you can make an informed decision that aligns with your specific animal research needs and enhances the quality and impact of your work.

Motion Analysis Corporation Unveils Cortex 9.5 Software Upgrade

November 8 2023, California – Motion Analysis Corporation is excited to announce the highly-anticipated release of Cortex 9.5, the latest edition of its cutting-edge motion capture software. This update is now available for download and is accessible to all customers with active warranties or current software maintenance contracts.

Cortex 9.5 introduces a range of exceptional features and improvements that elevate the motion capture experience to new heights, providing users with greater flexibility, efficiency, and accuracy. Here are the key highlights of this remarkable update:

Quick Files Capture Status: Cortex 9.5 introduces Quick Files Capture Status indicators, simplifying the assessment of dataset status. Users can easily classify captures as “Unedited,” “In Progress,” or “Complete.” Customization options are also available, allowing users to create their own status names and icons, providing a user-friendly experience.

Kestrel Plus Cameras: With Cortex 9.5, Motion Analysis Corporation introduces the Kestrel Plus camera line, featuring the Kestrel Plus 3, Kestrel Plus 22, and Kestrel Plus 42. These new cameras seamlessly integrate with Cortex 9, expanding your capture capabilities and delivering high-quality results.

Trim Capture Modifications: Cortex 9.5 enhances the Trim Capture feature, enabling users to modify names, generate captures on a per-markerset basis, and add timecode support. This streamlined process facilitates the extraction of relevant data from capture files and offers improved post-processing options.

Workflow Improvements: Cortex 9.5 enhances the Workflow feature, making task execution even more efficient. Users can now utilize a search tool and a workflow repository, enabling easy access and management of workflows, optimizing productivity.

Live Detailed Hand Identification: Advanced hand tracking techniques have been integrated into Cortex 9.5, reducing marker swapping during live collection and post-processing of intricate finger movements. Users can contact the support team for a sample markerset to enable this feature.

Automatic Wand Identification for Reference Video Overlay Calibration: In a significant time-saving move, Cortex 9.5 automates the marker selection process for reference video overlay calibration, eliminating manual marker selection and potential user errors. This feature can be applied in both Live Mode and Post Process.

Bertec Digital Integration: Cortex 9.5 now offers support for Bertec AM6800 digital amplifiers, simplifying setup and reducing the number of required components, thus enhancing the overall user experience.

National Instruments New Device Compatibility: Cortex 9.5 continues its support for National Instruments A/D board data collection and expands compatibility to their next generation of DAQs, maintaining flexibility and ensuring compatibility with previously supported devices.

Additional Updates and Features: Several additional updates and features, such as the renaming of the Post Process X panel to Tracks, improved contrast in Dark Mode, and an increased marker slot limit, are included in this feature-rich update.

Cortex 9.5 marks a significant milestone in the field of motion capture, empowering users with advanced tools, enhanced workflows, and improved performance.

To learn more about Cortex 9.5 and take advantage of these exciting new features, download the full release notes here, or contact our sales and support teams for further information and assistance.

Motion Analysis Corporation continues to lead the way in motion capture technology, and Cortex 9.5 is a testament to our commitment to delivering innovative solutions that meet the evolving needs of our customers.

About Motion Analysis Corporation

Motion Analysis Corporation is a leading provider of motion capture technology solutions for various industries, including entertainment, sports, healthcare, and research. With a focus on innovation and customer satisfaction, Motion Analysis Corporation strives to make motion capture more accessible and versatile.

The top conferences biomechanics specialists need to attend in 2022

The pandemic saw the world take every kind of event you can imagine online – from conferences and business meetings to birthdays and all kinds of other celebrations. While there’s no doubt that virtual events are here to stay, as the pandemic situation improves people are slowly starting to get comfortable with the idea of attending in-person events again. And we’re here for it. 

At the end of 2021, we had the opportunity to attend Develop:Brighton, an annual conference held for the gaming community, where we got the chance to learn, network and interact with an incredible group of international animators. 

We enjoyed the experience so much that it inspired us to put together a list of all of the top conferences we think are worth taking note of this year, and this time specifically focused on the biomechanics and movement analysis industry. If you’re keen to get out again and interact with other scientific and creative minds, here’s a list of some of the top conferences to diarize this year.

International Symposium on 3D Analysis of Human Movement
When: May 16th – 19th
Where: Tokyo, Japan

In 2022, the International Symposium of 3D Analysis of Human Movement (3D-AHM 2022) will be hybrid, with the face-to-face symposium taking place in Tokyo also streamed online. Tokyo is home to diverse cultures and histories and is an intersection of rich traditions and world-leading technologies, making it the perfect location for this event. Some topics of interest include fusion of motion capture methods, effects of environment on motion analysis methods and 3D analysis of human movement. For us, this event is of particular interest because Motion Analysis has been involved in this event since its inception. We are on the event committee as an industry representative and we’re also one of the event sponsors.

ACSM 2022
When: May 31st – June 4th
Where: San Diego, USA

After two years away, the American College of Sports Medicine (ACSM) Annual Meeting and World Congresses on Exercise is Medicine® and Basic Science of Exercise and Vascular Health will be hosted both on-site and online in 2022. These events showcase the latest in exercise science and sports medicine, with so many opportunities for attendees to learn from leading scientists both inside and outside of the exercise field. As part of our efforts to promote biomechanics research in the sports medicine community, we are sponsoring the Career Award at ACSM 2022.

ISEK Congress
When: June 22nd – June 25th
Where: Quebec City, Canada

The International Society of Electrophysiological Kinesiology (ISEK) is a multidisciplinary organization comprising members from health-related fields such as biomedical sciences, engineering, physical education, and physical therapy, among others. At ISEK 2022, members from all of these different fields will get the chance to further their understanding of human movement by collaborating with people who have different perspectives, but who have a common goal of increasing our shared understanding of human movement. ​ At the event, attendees will get the chance to attend workshops, listen to keynote addresses from international speakers and learn via presentations from ISEK members. This is one not to be missed.  

ISBS Annual Conference
When: July 19th – 23rd
Where: Liverpool, England

Now in its 40th year, the annual International Society of Biomechanics in Sports (ISBS) conference brings together some of the industry’s most prolific researchers to deliver keynote discussions on a wide range of topics. At this year’s event, a keynote slot was offered to the researcher who won the ISBS’ Hans Gros Emerging Researcher Award. Want to hear from the person who scooped up this accolade? Sign up for this one, today.

ACRM Annual Conference
When: November 8th – 11th
Where: Chicago, USA

In 2022, you can attend the American Congress of Rehabilitation Medicine (ACRM) conference from anywhere in the world – from your office, from the comfort of your own home, or you can choose to attend in person, in Chicago. Hosted by the ACRM, the annual conference is the world’s largest interdisciplinary rehabilitation research conference and is certainly the place to be for anyone interested in understanding the science behind rehabilitation.

ISB Congress
When: August 2023
Where: Fukuoka, Japan

We are so excited for this event, that we’re mentioning it a whole year early. In 2023, the International Society of Biomechanics (ISB) is turning 50 and they’re hosting a big event to celebrate. Not only is the ISB the largest society in Biomechanics, but it is also the oldest. At the event, the society will pay homage to 50 years of education, dedication, inspiration and innovation and they also want to look ahead and unpack how they will continue contributing to this field in years to come.

Will you be attending any of these conferences in 2022? Or are there any other events that you think we should add to the list? Let us know via LinkedIn or Twitter.

Client Spotlight Dr. Robert Catena: Researching human balance control at WSU

Welcome to the first in our series of Client Spotlight articles. Our aim is to showcase some of the fascinating work our clients are doing, and how they’re using cutting-edge technology to do it.

Today, we spoke to Dr. Robert Catena, Assistant Professor of Kinesiology at Washington State University.

What do you do at Washington State University?

I oversee the Gait and Posture Biomechanics lab at WSU. This lab is used to conduct research in dynamic balance, with the goal of reducing falls in society. Beyond its research goals, the lab also gives students the opportunity to use some of the most advanced movement analysis equipment available.

Much of my current research (over the last five years) is focused on understanding balance control changes during pregnancy, with the goals of reducing fall rates for pregnant women, and understanding how reproduction was affected by our evolution to bipedalism.

I also teach Biomechanics to undergraduate students at the university.

How is your lab set up?

The Gait and Posture Biomechanics Lab includes everything we need to undertake and successfully complete research of dynamic balance control.  

Our technology includes:

You can read more about the lab here: https://labs.wsu.edu/biomechanics/facility/

Where can we read your published research?

You can find it all listed on my Google Scholar profile here:

View Robert’s Google Scholar profile

How would you describe Motion Analysis in a hashtag?

#Uncomplicated 🙂

DOWNLOAD CASE STUDY>